Preclinical Cerebral Network Connectivity Evidence of Deficits in Mild White Matter Lesions

نویسندگان

  • Ying Liang
  • Xuan Sun
  • Shijun Xu
  • Yaou Liu
  • Ruiwang Huang
  • Jianjun Jia
  • Zhanjun Zhang
چکیده

White matter lesions (WMLs) are notable for their high prevalence and have been demonstrated to be a potential neuroimaging biomarker of early diagnosis of Alzheimer's disease. This study aimed to identify the brain functional and structural mechanisms underlying cognitive decline observed in mild WMLs. Multi-domain cognitive tests, as well as resting-state, diffusion tensor and structural images were obtained on 42 mild WMLs and 42 age/sex-matched healthy controls. For each participant, we examined the functional connectivity (FC) of three resting-state networks (RSNs) related to the changed cognitive domains: the default mode network (DMN) and the bilateral fronto-parietal network (FPN). We also performed voxel-based morphometry analysis to compare whole-brain gray matter (GM) volume, atlas-based quantification of the white matter tracts interconnecting the RSNs, and the relationship between FC and structural connectivity. We observed FC alterations in the DMN and the right FPN combined with related white matter integrity disruption in mild WMLs. However, no significant GM atrophy difference was found. Furthermore, the right precuneus FC in the DMN exhibited a significantly negative correlation with the memory test scores. Our study suggests that in mild WMLs, dysfunction of RSNs might be a consequence of decreased white matter structural connectivity, which further affects cognitive performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies

Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme ...

متن کامل

Disrupted Thalamus White Matter Anatomy and Posterior Default Mode Network Effective Connectivity in Amnestic Mild Cognitive Impairment

Alzheimer's disease (AD) and its prodromal state amnestic mild cognitive impairment (aMCI) are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN) resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that a...

متن کامل

Altered whole-brain white matter networks in preclinical Alzheimer's disease

Surrogates of whole-brain white matter (WM) networks reconstructed using diffusion tensor imaging (DTI) are novel markers of structural brain connectivity. Global connectivity of networks has been found impaired in clinical Alzheimer's disease (AD) compared to cognitively healthy aging. We hypothesized that network alterations are detectable already in preclinical AD and investigated major glob...

متن کامل

Effects of White Matter Injury on Resting State fMRI Measures in Prematurely Born Infants

The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation), resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurode...

متن کامل

P27: Brain Network as a Pivotal Part in Intelligence Function

Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016